

A Lightweight Transformer for Next-Item Recommendation

RecSys 2022 Jeffrey Mei, Cole Zuber, Yasaman Khazaeni

Multi-headed Attention Recommender System

MARS: A lightweight transformer model powering recommendations using only customer browse for inference.

Based off SASRec (Kang & McAuley 2018)

It is trained on customer-item interactions only - i.e. viewed items and ATC/ordered items (if they exist for a customer), in the order they were interacted with.

(link for video)

Rugs / Area Rugs

食食食食食(1745)

\$55.99 \$62.99

Recommended

★★★★ (1301) - Sort by -

Area Rugs

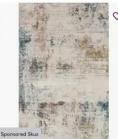
Over 500,000 Results

Maliha Indoor / Outdoor Area Rug in Gray by Latitude Run®

\$39.99 - \$269.99 649.00

★★★☆ (1249)

Free Shipping



+9 Sizes

Liddle Abstract Area Rug in Ivory/Granite by Trent Austin Design®

\$48.99 - \$749.99 \$79.00

****(255)

Free Fast Delivery

Get it by Mon, Jun 20

Lachapelle Ikat Flatweave Indoor / Outdoor Area Rua in Espresso by Laurel Foundry Modern Farmhouse®

\$69.99 - \$72.99 675.00

****(751)

Free Shipping

+38 Sizes

Irania Oriental Area Rug in Cream/Navy by Bungalow Rose

\$23.99 - \$369.99 \$40.99

食食食食(6451)

Fast Delivery

Get it by Sat, Jun 18

Sponsored

::wayfair 2

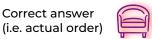
Offline evaluation

For our purposes - one right answer (next order), everything else is wrong

In theory you can use next-ATC, next-view, even all future orders etc.

Standard metrics:

- Recall (position-agnostic)
- nDCG (logarithmic positional discount)



Rank of Ordered Item

Customer 1

Customer 2

Customer 3

Customer 4

(mean) Recall@6:

$$\frac{1+1+1+0}{4}=0.75$$

$$\mathbf{DCG} = \sum_{k}^{N} \frac{2^{rel_k} - 1}{\log_2(k+1)} = \sum_{k}^{4} \frac{1 \text{ if right else } 0}{\log_2(k+1)}$$

(mean) nDCG@6:
$$\frac{\frac{1}{\log_2(3+1)} + \frac{1}{\log_2(5+1)} + \frac{1}{\log_2(1+1)} + 0}{\log_2(1+1)} =$$

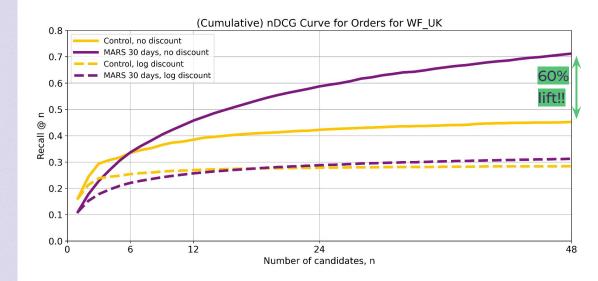
Offline evaluation looks good...

We show 48 results per page, so a very natural metric for us is **Recall@48** or **nDCG@48**.

Recall@48 prediction: Win Log₂ nDCG@48 prediction: Win

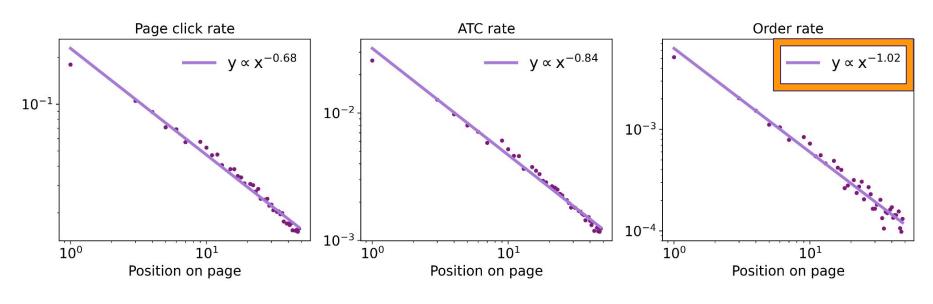
=> Do an A/B test

But the test for WF_UK failed... orders actually **significantly dropped** by >1%.



wayfair

Determining positional effects empirically



nDCG

 $\frac{\frac{1}{\log_2(3+1)} + \frac{1}{\log_2(5+1)} + \frac{1}{\log_2(1+1)} + 0}{\Delta} = 0.47$

 $\mathsf{nDCG}_{\mathsf{e}}$

$$\frac{\frac{1}{3^{1.02}} + \frac{1}{5^{1.02}} + \frac{1}{1^{1.02}} + 0}{4} = 0.38$$

::wayfair

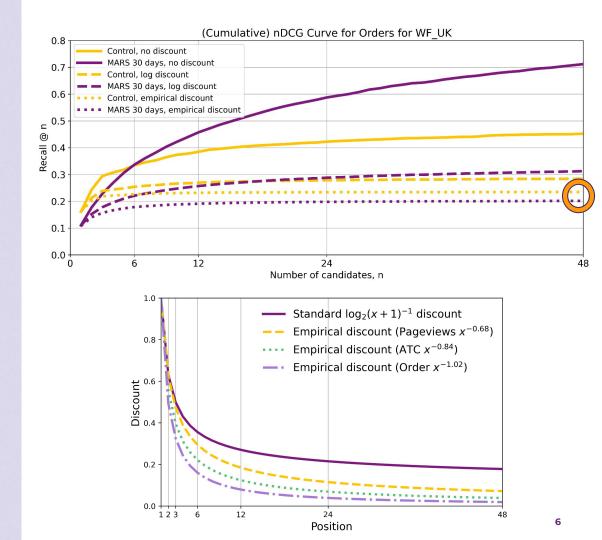
Applying empirical discount

Now we can see that the empirical discount rate of $x^{-1.02}$ actually shows control beating MARS.

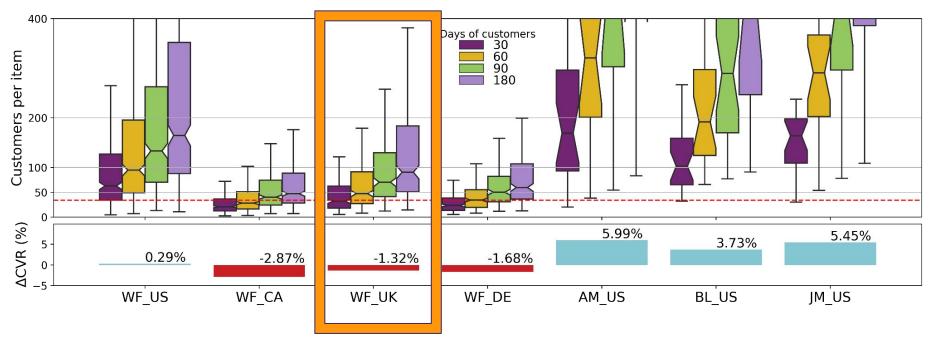
True A/B test result: -1% CVR

Recall@48 prediction: **Win**Log₂ nDCG@48 prediction: **Win**x^{-1.02} nDCG₂@48 prediction: **Loss**

The standard log₂ discount is too small to account for our real, observed positional effect.



Data thinness is very correlated with A/B test result



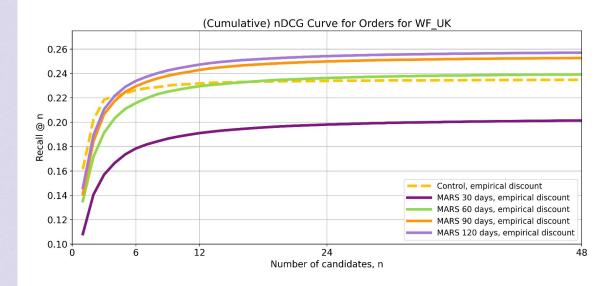
- US stores account for 80% of revenue so the test was an overall win, but we would love to see all stores winning
- Data thinness is different for each store

Increased training data

The benefit of adding more training data eventually saturates

 although we can keep increasing the performance, this also increases training time ~linearly.

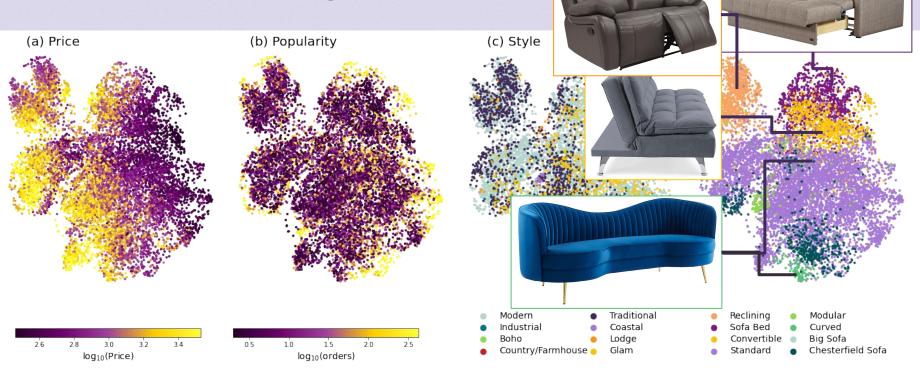
More importantly, we can see 90 days gives a very clear lift of (order-discounted) nDCG @48 of ~25%.



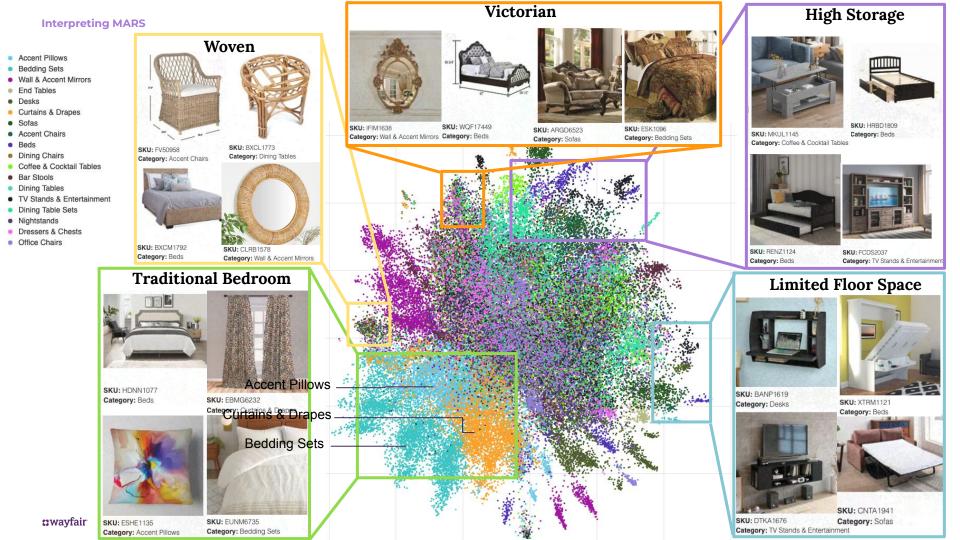
When we A/B tested again using 90 days of training data, CVR for WF_UK increased 2.4%!

≅wayfair 8

Learned Item Embeddings - Sofas



tawayfair 9



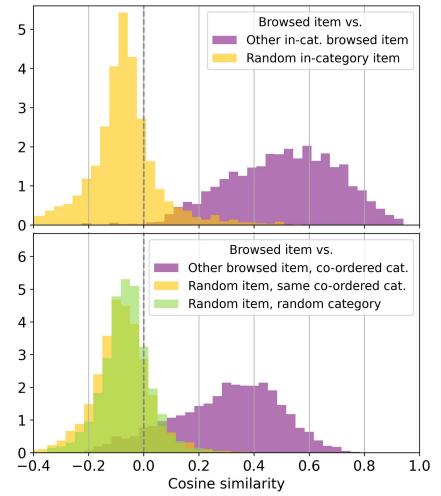
Do these attributes carry across furniture types?

We see high similarity between browsed items for both in-category and cross-category* browse.

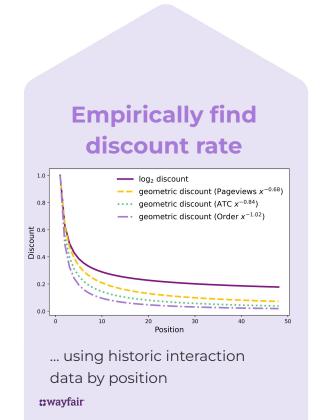
Here, we remove the category signal from the embeddings as we want to exclude the effect of categories themselves being overall similar.

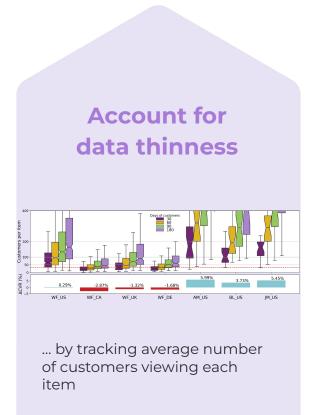
*Commonly co-ordered category e.g.

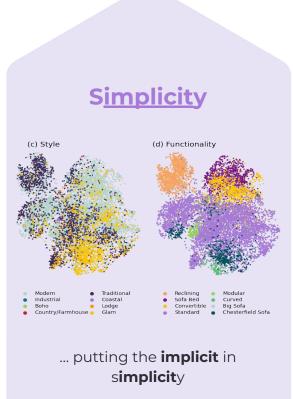
- Nightstands and beds
- Sofas and coffee tables



Summary of learnings







wayfair